
The heating source was a continuousmode IAG laser, producing power levels up to 80 W. 
The beam diameter at the exit window was 4 mm. The experimental vessel was made of glass, 
with dimensions of 60 x 60 x 200 mm. 

During the experiments temperature distribution profiles were determined at various 
sections of the induced convective flow. The vertical temperature profile for the liquid 
PES-4 is shown in Fig. i. The liquid column height was 180 mm, with heating power of 45 W, 
radiation propagating vertically downward. 

A study was also made of the dependence of temperature on the jet axis on heating radia- 
tion power (Fig. 2). It was found that for all liquids these curves can be approximated 
well by the expression 

A T  (0) = A P  ~ 38, 

where A depends on the height of the column and physical properties of the liquid. 

NOTATION 

e, refraction angle; p, impact parameter; n, index of refraction; no, index of refrac- 
tion of undisturbed medium; AT(r), temperature change at measurement point; dn/dT, temper- 
ature dependence of index of refraction; v, kinematic viscosity; Cp, specific heat; ~, ther- 
mal conductivity; P, heating radiation power; A, experimental constant. 
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NONLINEAR WATER TRANSPORT IN INTRASOIL IRRIGATION 

Yu. A. Buevich and U. M. Mambetov UDC 532.46 

Solutions have been obtained for nonlinear capillary diffusion from instantaneous 
planar, line, and point sources with allowance for plant root uptake. 

New irrigation methods have various advantages over traditional spray and trench ones, 
as a system of perforated tubes or droplet feeds is buried at a certain depth, which reduces 
the water loss by evaporation by comparison with surface supply. Such buried irrigation 
can be optimized if various aspects of hydrodynamics and transport theory can be resolved for 
unsaturated soil with allowance for uptake by the roots. 

General principles and methods have been given in heat and water transport theory for 
porous media in [1-3]. Even under isothermal conditions, the transport in an incompletely 
saturated medium involves extremely complicated nonlinear boundary-value problems. These 
difficulties have led to various linearization techniques being used [4-6] or various nume- 
rical methods [7-9]. Many detailed aspects are thereby neglected. Here we consider these 
boundary-value problems containing marked nonlinearity for planar, axial, and central sym- 
metries without resort to linearization, although we neglect the bound water (and thus the 
space excluded from the transport) and the nonzero retained water content (at which the plants 
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cease to take up water from the soil), while we also assume that the gravitational compo- 
nent in the total head is small by comparison with the capillary one (negative capillary 
pressure). 

With these assumptions, the central equation in Klute's theory [3, i0] becomes 

aw/at = v (kvr -- q (w). ( 1 ) 

I f  t h e  s a t u r a t i o n  i s  i n c o m p l e t e ,  t h e  a p p r o x i m a t e  r e l a t i o n  w = w 0 exp ( a r  a p p l i e s  b e t w e e n  
t h e  w a t e r  c o n t e n t  and t h e  c a p i l l a r y  p r e s s u r e  [ 2 ,  1 1 ] ,  and  t h e  a p p r o x i m a t i o n  k = k0w n a p p l i e s  
f o r  t h e  w a t e r  t r a n s p o r t : c o e f f i c i e n t ,  w h e r e  t h e  v a l u e s  s u g g e s t e d  f o r  n a r e  3 [ 2 ] ,  3 . 5 6  [ 1 2 ] ,  
and  4 [ 1 3 ] .  T h e r e f o r e ,  one  c a n  t a k e  d~/dw = 1 /aw and  

V(kVr = DV(W~-~VW), D = ko/a. ( 2 )  

The uptake rate per unit volume can be represented to a first approximation [13] as 

q (w) = xw; ( 3 )  

however, more complicated methods of describing the uptake have been proposed [7, 14, 15]. 

From (2) and (3), (i) is written as 

Ow/Ot = D V ( w n - 1 V W ) - - •  (4) 

(2) and (3), as well as (4), apply only for incomplete saturation, when the water content 
is less than a critical value. In the propagation considered below from instantaneous sources, 
we assume that the initial water content w(O, x) is zero and that the water content w(t, x) 
away f~om the sources becomes zero. We also assume as given the total amount of water en- 
tering the soil from the source at the start. 

We transform (4) by means of a new unknown function and a time variable: 

D 
w(t, x) = e x p G - •  ' x), �9 = {1 - -  e x p [ - - ( n - -  1)• ( 5 )  

n ( n - -  1)• 

Then small sources with planar, cylindrical, and spherical symmetries give the boundary- 
value treatments for f(~, x) as 

aL 1 0 ( a " )  ~ t" S . . . .  x ~ f~ ; j x L ( O , x )  d x = Q ;  
0"~ x s Ox Ox o 

a f o / a x  = o,  x = o; L (% o~) = o; f ,(o, x) = o, 

(6) 

where parameter s is correspondingly 0, i, or 2. The condition at x = 0 in the planar case 
follows from the symmetry. 

Equations (6) have self-similar solutions, which were first derived in [16, 17] in the 
propagation of strong thermal waves and nonlinear filtration [18]. For planar, axisymmetric 
and spherically symmetrical cases, one introduces the self-similar variable and the new un~ 
known function ~(~) [17]: 

! 1 

1 I 

s = 1 : ~ = x ( Q " - ~ ' O  2,, , f~  = (Q/-~) " qo~ (~); 

1 2 3 

s 2 : ~ = x (O"-~ '~ )  3,,-~ , L = (O 3 / . q  3, , -J % (~). 
(7) 

From (6) one gets ordinary differential equations and conditions for them for #s($); the 
integral condition in (6) applies not only for ~ = 0 but also for any �9 > 0, and correspon- 
dingly the ~s(~) satisfy an integral condition containing Q = I similar in form. The solu- 
tions are [17] 

1 

2 n - - I  

o, ~ ,  
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where for a planar source 

0o {2[ 2n(n-l- 1) ] 
n - - 1  

1 
n--1 

F 

for a line source 

Co=[ 

n r n 

1 
n - - 1  ] n-1 

2n(n-+- 1) ~g' 

1 . - - 1  

and for a point source 

1 

= r + x 
n - - 1  

X 

n - - !  

(9) 

I 

" - '  ~ ( i 0 )  

I 
n--I 

(ii) 

Here r(z) is Euler's ga~na function. The characteristics of (8)-(11) have been discussed 
in detail in [16-18], as they describe a wave whose front x, is 

1 

s = o : x ,  = to  ( Q n - - I ~ )  n + l  

1 

s = 1 : x ,  = ~;~ ( Q " - ~ #  2~ . 

1 

S ~-" 2 : X ,  = ~2 ( Q n - l , ~ )  3 . - t  

( 1 2 )  

and propagates with a finite velocity decreasing monotonically as �9 increases. Here fs(T, x) 
is dependent only weakly on x at (0, x~), apar t from a small range directly adjoining the 
front; the values for a given ~/~s decrease in inverse proportion to fractional powers of 
as indicated in (7). For n < 2, the fs(~, x) curves for a given �9 approach the x axis and 
touch it at x~, while for n > 2, they do so at a right angle [17]. The front recedes asympto- 
tically (~ + ~) from the source to an infinite distance. The functions ~s(~) and fs(~, x) 
satisfy 

lira ~ d ~  (~) xS 0[~ (~, x) 
~ o  " dE : =  O, x~olim Ox = O, ( 1 3 )  

which reflect the source being instantaneous. 

These solutions from (5), (7), and (8) are written explicitly as: for a planar source 

1 
w (t, ~ = Wo exp ( - -  • 1 - -  

1 

{ 1 - -  exp [ - -  (n - -  1) • .+1 

1 ]~247 , (14) 
{ 1 - -  exp [ - -  (n - -  ~1) ~t]} n+l 

1 

W0~C0[ n(n__ l)xQz ] n+l 
�9 m 

for a line source 

662 



! 

{ 1 - -  exp [-- (n - -  1) ~tl} -E \ ~1 ' 

1 

~(t, x ) = [  n ( n - - 1 ) •  .1 2n X 
D Q n . . ~ I  1 ' 

{1 - -exp[ - -  (n - -  t)• ~" ( t 5 )  

1 

and for a point source 

w (t, x) = 
1 

{1 - - exp[ - - (n - -  1)• 3n--I 
[ 

~(l, X)=[ n(n--l)~DQ n-I .] 3n--I X --I ' (16) 

{ 1 -- exp [ - -  (n -- 1) • 3n-x 

3 

W, = C, [ n(n- -  l)• 
D 

where the constants ~s and C s are defined correspondingly in (9), (i0), and (ii). Solutions 
(14)-(16) are not self-similar. As K tends to zero (i.e., when the roots cease to take up 
water), these solutions become the self-similar (8) ones. 

The most marked difference between propagation with absorption from that without it is 
that even asymptotically for t § ~, the front is displaced only to a maximum but finite dis- 
tance x m from the source. (12) gives x m on the basis of �9 represented in terms of t from 
(5) as 

I 

s =  O:xm---- ~o n ( n - - 1 ) ~  

I 

s---'= l:xm=~-I . n(n__l)  • 

I 

' s = 2 : x m - - - -  ~2 n ( n - -  1)• . ' 

(17) 

i.e., x m increases with Q and D but decreases as ~ increases. Then with uptake, any instan- 
taneous source with a given output can irrigate only a quite definite finite volume. The 
falls in front propagation rate and water content within the irrigated zone follow almost 
exponential laws as t increases. 

The finite irrigated volume imposes constraints on the typical distances between adja- 
cent pipes or holes, as well as between perforated tubes and planar networks of such tubes. 
If the object is to produce more or less uniform irrigation for an entire given soil volume, 
the distances should in any case be less than twice the corresponding x m in (17). When one 
is choosing appropriate distances between adjacent sources, importance attaches to the total 
amount of water taken ~p by the roots at a given distance from the source. The general ex- 
pression for this is 

6 ( x ) = ~  w(t, x ) ~ =  w(--•  x),,d~ , (18) 
r?x~ a ~ 
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= exp ( - -  • ~(T, x) = ~ ,  z(x) = exp ( - -  xT), 

where (18) implies 

where w(t, x) and ~(t, x) are defined by (14)-(16). Similarly, one can represent the amount 
of water taken up in a finite time (e.g., between successive irrigations). The integrals in 
(18) as functions of s cannot be expressed in terms of elementary functions. 

The integrals in (18) can be represented as incomplete beta functions or Gauss hyper- 
geometric ones, but this is of no particular value as one lacks fairly detailed tables for 
these functions. We therefore derive a simple approximation for G(x) for large t (when ~n-1= 
exp [-(n - l)Kt] ~ i) or, which is the same, for x sufficiently close to x m (i.e., in the 
region particularly hazardous as regards insufficient water supply). That approximation 
also simplifies the w(t, x) expression considerably; from (14)-(17) we have 

! 

m (t, x) ~ W~ 1 - -  exp ( - -  • 

z x,=[1 ] 
I 

n--I 

in which a = n + i, 2n, and 3n - I for s = 0, i, and 2 correspondingly. Finally, (18) gives 

! 

X 2 n - - I  

\ Xm / 

T h i s  f o r m u l a  a l s o  a p p l i e s  f o r  t h e  amoun t  o f  w a t e r  t a k e n  up f r o m  a s i n g l e  i r r i g a t i o n  i f  t h e  
i n t e r v a l s  b e t w e e n  i r r i g a t i o n s  a r e  l o n g  e n o u g h .  

If agrotechnical considerations impose specifications for the absorbed-water distribu- 
tion within the irrigated volume, (19) is useful to locate the sources properly and define 
the necessary distances between them. As G(x) is dependent inexplicitly on Q via x m from 
(17), that formula can also he used in irrigation tactics, e.g., in determining the optimum 
number and extent of the irrigation cycles. 

One can use the results for the different source types simultaneously in applications. 
For example, one might have a parallel set of perforated tubes, where the point source result 
can be used to simulate individual holes and thus determine the optimum distance between 
those holes. At the next scale level, when the waves have joined up from the holes, each 
tube can be represented as a line source, whose output is determined by averaging along it. 
Then one can define the general tube arrangement (linear, chessboard, and so on) and the 
distances between tubes. Finally, a system of tubes in one plane can be represented as a 
planar source, whose output is governed by averaging over all tubes. The solution for a 
planar source can also be used to describe surface irrigation if evaporation can be neglec- 
ted. Similarly, a line source can be useful in simulating trench Surface irrigation. 

Allowance for the finite dimensions means that the solutions to (6) with different s 
cease to be self-similar, so (14)-(16) are approximate but describe the propagation adequate- 
ly at distances considerably exceeding the source dimensions. The same applies to the 
assumption about the instantaneous sources. The formulas apply approximately for times sub- 
stantially exceeding the characteristic working times. 

The equations in (6) have comparatively simple self-similar solutions also if f0(~, x) 
or the derivatives 8fsn(~, x)/Bx follow power laws at x = 0 with any positive indices [17]; 
these correspond to the solutions for (4) of this type in which the source output is a one- 
parameter time function, whose form is readily derived from (5) and the power law. For a 
planar source, there is also a solution corresponding to the water-content change at x = 0 
on a one-parameter law. Although of themselves these solutions correspond to somewhat hypo- 
thetical situations, they are useful for solving many nonlinear boundary-value problems ap- 
proximately for the propagation of water based on integral relationships, by analogy with 
boundary-layer theory. In [19], there is a discussion of this in relation to certain one- 
dimensional treatments in nonlinear filtration theory. 
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When this paper had been sent to press, the authors became aware of [20], in which solu- 
tions were considered to a quasilinear thermal-conduction equation analogous to those dis- 
cussed here. 

NOTATION 

Cs, constants introduced in (8); D, diffusivity; f, unknown function introduced in (5); 
G, total water uptake in unit volume; k, water transport coefficient; Q, quantity propor ~ 
tional to source output; q, root uptake in unit volume in unit time; s, parameter in (6); T, 
integration limit in (18); t, time; Ws, constants defined in (14)-(16); w, water content; x, 
spatial coordinate; x,, coordinate of water-content front; Xm, maximum distance traveled by 
front; z, integration limit in (18); ~, exponent in (19); ~, variable in (18); K, absorption 
coefficient; $, self-similar variable; Ss, constants introduced in (8); T, modified time; ~, 
negative capillary pressure. 
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